Skip to main content
Medicine LibreTexts

2.3D: Essential Fatty Acids and Eicosanoids

  • Page ID
    1347
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The two essential fatty acids are:

    1. linoleic acid (omega-6)
    2. alpha-linolenic (omega-3)

    These fatty acids are essential because we can not synthesize them. This is because we do not have an enzyme capable of adding a double bond (desaturating) beyond the omega-9 carbon counting from the alpha end (the omega-6 and 3 positions). The structures of the two essential fatty acids are shown below.

    Figure 2.341.png

    Figure 2.341: Linoleic acid

    Figure 2.342.png

    Figure 2.342: Alpha-linolenic acid

    However, we do possess enzymes that can take the essential fatty acids, elongate them (add two carbons to them), and then further desaturate them (add double bonds) to other omega-6 and omega-3 fatty acids. Thus, there are 2 families of fatty acids that the majority of polyunsaturated fatty acids fit into as shown below.

    Figure 2.343 .png

    Figure 2.343 Omega-3 and omega-6 fatty acids and eicosanoid production3

    The same enzymes are used for both omega-6 and omega-3 fatty acids. However, we cannot convert omega-3 fatty acids to omega-6 fatty acids or omega-6 fatty acids to omega-3 fatty acids. Among these families, the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the omega-6 fatty acids, dihomo gamma-linolenic acid and arachidonic acid (AA), are used to form compounds known as eicosanoids. These 20 carbon fatty acid derivatives are biologically active in the body (like hormones, but they act locally in the tissue they are produced). There are four classes of eicosanoids:

    • Prostaglandins (PG)
    • Prostacyclins (PC)
    • Thromboxanes (TX)
    • Leukotrienes (LT)

    Some examples of eicosanoid structures are shown in the figure below:

    Figure 2.344 .png

    Figure 2.344 Eicosanoid structures4-8

    The difference in the effects and outcomes of omega-6 and omega-3 fatty acid intake is primarily a result of the eicosanoids produced from them. Omega-6 fatty acid derived eicosanoids are more inflammatory than omega-3 fatty acid derived eicosanoids. As a result, omega-3 fatty acids are considered anti-inflammatory because replacing the more inflammatory omega-6 fatty acid derived eicosanoids with omega-3 fatty acid derived eicosanoids will decrease inflammation. As an example of the action of eicosanoids, aspirin works by inhibiting the enzymes cyclooxygenase (Cox)-1 and Cox-2. These enzymes convert arachidonic acid into inflammatory prostaglandins as shown below.

    Figure 2.345.png

    Figure 2.345 Aspirin inhibits Cox-1 and Cox-29

    You have probably heard that you should get more omega-3s in your diet, and in general polyunsaturated fatty acids are considered healthy. However, since omega-3 fatty acids are competing for the same enzymes as omega-6 fatty acids, and because the omega-6 fatty acids are more inflammatory, consuming too many omega-6s is probably more detrimental than helpful. As a result, many people talk about the omega-3:omega-6 fatty acid ratio in people's' diets. For most Americans, the ratio is believed to be too high, at almost 10-20 times more omega-6 fatty acids than omega-3 fatty acids10. The table below shows good food sources of some selected omega-3 and omega-6 fatty acids.

    Table 2.341 Good food sources of selected omega-3 and omega-6 fatty acids
    Fatty Acid Good Food Sources
    Linoleic Acid (LA, n-6) Safflower Oil, Corn Oil, Sunflower Oil
    Arachidonic Acid (AA, n-6) Eggs, Meat
    Alpha-Linolenic Acid (ALA, n-3) Walnuts, Flaxseed (linseed), Canola (rapeseed), and Soybean Oils
    Eicosapentaenoic Acid (EPA, n-3) Fatty Fish & Fish Oils
    Docosahexanoic Acid (DHA, n-3) Fatty Fish & Fish Oils

    Even though Figure 2.343 illustrates the conversion of alpha-linolenic acid to EPA and DHA, this conversion is actually quite limited; 0.2-8% of ALA is converted to EPA and 0-4% of ALA is converted to DHA11. Thus, dietary consumption is the most effective way to get the longer chain fatty acids (EPA and DHA) in our bodies. It is less clear whether ALA consumption is as beneficial as EPA and DHA, but a recent study found it to be equally effective in decreasing blood triglyceride concentrations. In that study, DHA had the added positive benefit of increasing HDL12. These are all positive outcomes that are expected to reduce the risk of developing cardiovascular disease. However, there is evidence accumulating that there is not much cardiovascular benefit from taking fish oil supplements as described in the article below.

    Essential Fatty Acid Deficiency

    Essential fatty acid deficiency is rare and unlikely to occur, but the symptoms are:

    • Growth retardation
    • Reproductive problems
    • Skin lesions
    • Neurological and visual problems

    References & Links

    1. en.Wikipedia.org/wiki/File:LAnumbering.png
    2. en.Wikipedia.org/wiki/File:ALAnumbering.png
    3. en.Wikipedia.org/wiki/File:EF...icosanoids.svg
    4. en.Wikipedia.org/wiki/File:Pr...glandin_E1.svg
    5. en.Wikipedia.org/wiki/File:Thromboxane_A2.png
    6. en.Wikipedia.org/wiki/File:Leukotriene_B4.svg
    7. en.Wikipedia.org/wiki/File:Pr...glandin_I2.png
    8. en.Wikipedia.org/wiki/File:Leukotriene_E4.svg
    9. en.Wikipedia.org/wiki/File:Ei..._synthesis.svg
    10. Simopoulos AP. (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233(6): 674.
    11. Arterburn LM, Hall EB, Oken, H. (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83(suppl) 1467.
    12. Egert S, Kannenberg F, Somoza V, Erbersdobler H, Wahrburg U. (2009) Dietary alpha-linolenic acid, EPA, and DHA have differential effects on LDL fatty acid composition but similar effects on serum lipid profiles in normolipidemic humans. J Nutr 139(5): 861.

    Links

    Fish Oil Claims Not Supported by Research - http://well.blogs.nytimes.com/2015/0...d-by-research/

    Contributors and Attributions


    This page titled 2.3D: Essential Fatty Acids and Eicosanoids is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Brian Lindshield via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?