1.5: The Broad Role of Nutritional Science

Earning Objective

- Provide an example of how the scientific method works to promote health and prevent disease.

How to Determine the Health Effects of Food and Nutrients

Similar to the method by which a police detective finally charges a criminal with a crime, nutritional scientists discover the health effects of food and its nutrients by first making an observation. Once observations are made, they come up with a hypothesis, test their hypothesis, and then interpret the results. After this, they gather additional evidence from multiple sources and finally come up with a conclusion on whether the food suspect fits the claim. This organized process of inquiry used in forensic science, nutritional science, and every other science is called the scientific method.

Below is an illustration of the scientific method at work—in this case, to prove that iodine is a nutrient. Zimmerman, M.B. “Research on Iodine Deficiency and Goiter in the 19th and Early 20th Centuries.” *J Nutr* 138, no. 11 (November 2008): 2060–63. Carpenter, K.J. “David Marine and the Problem of Goiter.” *J Nutr* 135, no.4 (April 2005): 675–80. In 1811, French chemist Bernard Courtois was isolating saltpeter for producing gunpowder to be used by Napoleon’s army. To carry out this isolation he burned some seaweed and in the process observed an intense violet vapor that crystallized when he exposed it to a cold surface. He sent the violet crystals to an expert on gases, Joseph Gay-Lussac, who identified the crystal as a new element. It was named iodine, from the Greek word for violet. The following scientific record is some of what took place in order to conclude that iodine is a nutrient.

- **Observation.** Eating seaweed is a cure for goiter, a gross enlargement of the thyroid gland in the neck.
- **Hypothesis.** In 1813, Swiss physician Jean-Francois Coindet hypothesized that the seaweed contained iodine and he could use just iodine instead of seaweed to treat his patients.
• **Experimental test.** Coindet administered iodine tincture orally to his patients with goiter.

• **Interpret results.** Coindet’s iodine treatment was successful.

• **Gathering more evidence.** Many other physicians contributed to the research on iodine deficiency and goiter.

• **Hypothesis.** French chemist Chatin proposed that the low iodine content in food and water of certain areas far away from the ocean were the primary cause of goiter and renounced the theory that goiter was the result of poor hygiene.

• **Experimental test.** In the late 1860s the program, “The stamping-out of goiter,” started with people in several villages in France being given iodine tablets.

• **Results.** The program was effective and 80 percent of goitrous children were cured.

• **Hypothesis.** In 1918, Swiss doctor Bayard proposed iodizing salt as a good way to treat areas endemic with goiter.

• **Experimental test.** Iodized salt was transported by mules to a small village at the base of the Matterhorn where more than 75 percent of school children were goitrous. It was given to families to use for six months.

• **Results.** The iodized salt was beneficial in treating goiter in this remote population.

• **Experimental test.** Physician David Marine conducted the first experiment of treating goiter with iodized salt in America in Akron, Ohio.

• **Results.** This study conducted on over four-thousand school children found that iodized salt prevented goiter.

• **Conclusions.** Seven other studies similar to Marine’s were conducted in Italy and Switzerland that also demonstrated the effectiveness of iodized salt in treating goiter. In 1924, US public health officials initiated the program of iodizing salt and started eliminating the scourge of goiterism. Today more than 70 percent of American households use iodized salt and many other countries have followed the same public health strategy to reduce the health consequences of iodine deficiency.

Evidence-Based Approach to Nutrition

- Defining the problem or uncertainty (e.g., the rate of colon cancer is higher in people who eat red meat)
- Formulating it as a question (e.g., Does eating red meat contribute to colon cancer?)
- Setting criteria for quality evidence
- Evaluating the body of evidence
- Summarizing the body of evidence and making decisions
- Specifying the strength of the supporting evidence required to make decisions
- Disseminating the findings

The Food and Nutrition Board of the Institute of Medicine, a nonprofit, nongovernmental organization, constructs its nutrient recommendations (i.e., Dietary Reference Intakes, or DRI) using an evidence-based approach to nutrition. The
entire procedure for setting the DRI is documented and made available to the public. The same approach is used by the USDA and HHS, which are departments of the US federal government. The USDA and HHS websites are great tools for discovering ways to optimize health; however, it is important to gather nutrition information from multiple resources as there are often differences in opinion among various scientists and public health organizations. While the new Dietary Guidelines, published in 2015, have been well-received by some, there are nongovernmental public health organizations that are convinced that some pieces of the guidelines may be influenced by lobbying groups and/or the food industry. For example, the Harvard School of Public Health (HSPH) feels the government falls short by being "too lax on refined grains." The Harvard School of Public Health. "New US Dietary Guidelines: Progress, Not Perfection." © 2012 The President and Fellows of Harvard College. The guidelines recommend getting at least half of grains from whole grains—according to the HSPH this still leaves too much consumption of refined grains.

For a list of reliable sources that advocate good nutrition to promote health and prevent disease using evidence-based science (Table \(\PageIndex{1}\)). In Chapter 2, we will further discuss distinguishing criteria that will enable you to wade through misleading nutrition information and instead gather your information from reputable, credible websites and organizations.

<table>
<thead>
<tr>
<th>Table (\PageIndex{1}): Web Resources for Nutrition and Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
</tr>
<tr>
<td>Governmental</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>International</td>
</tr>
<tr>
<td>Nongovernmental</td>
</tr>
<tr>
<td>Harvard School of Public Health</td>
</tr>
</tbody>
</table>
Types of Scientific Studies

There are many types of scientific studies that can be used to provide supporting evidence for a particular hypothesis. The various types of studies include epidemiological studies, interventional clinical trials, and randomized clinical interventional trials.

Epidemiological studies are observational studies that look for health patterns and are often the front-line studies for public health. The CDC defines epidemiological studies as scientific investigations that define frequency, distribution, and patterns of health events in a population. Thus, these studies describe the occurrence and patterns of health events over time. The goal of an epidemiological study is to find factors associated with an increased risk for a health event, though these sometimes remain elusive. An example of an epidemiological study is the Framingham Heart Study, a project of the National Heart, Lung and Blood Institute and Boston University that has been ongoing since 1948. This study first examined the physical health and lifestyles of 5,209 men and women from the city of Framingham, Massachusetts and has now incorporated data from the children and grandchildren of the original participants. One of the seminal findings of this ambitious study was that higher cholesterol levels in the blood are a risk factor for heart disease. The Framingham Heart Study, a project of the National Heart, Lung, and Blood Institute and Boston University. "History of the Framingham Heart Study." Epidemiological studies are a cornerstone for examining and evaluating public health and some of their advantages are that they can lead to the discovery of disease patterns and risk factors for diseases, and they can be used to predict future healthcare needs and provide information for the design of disease prevention strategies for entire populations. Some shortcomings of epidemiological studies are that investigators cannot control environments and lifestyles, a specific group of people studied may not be an accurate depiction of an entire population, and these types of scientific studies cannot directly determine if one variable causes another. Scientists regard epidemiological studies as a starting place for ideas about what types of lifestyle choice MAY contribute to a disease. They can show a correlation between two things happening but not whether one factor CAUSED the other. My favorite example of this is a thought experiment where a make-believe scientist observes (through epidemiological studies) that grey hair often goes along with Alzheimer's Disease. Wouldn't it be silly for that scientist to predict that grey hair CAUSES Alzheimer's Disease? Could that scientist easily test that silly prediction? Suppose that scientist dyed a
group of people’s hair grey to see if the color grey truly increased their risk of Alzheimer’s Disease. The whole thing is silly but I think you get the point. Epidemiological studies may give us ideas but those ideas need clinical trials to figure out what the patterns mean.

Interventional clinical trial studies are scientific investigations in which a variable is changed between groups of people. When well done, this type of study allows one to determine causal relationships. An example of an interventional clinical trial study is the Dietary Approaches to Stop Hypertension (DASH) trial published in the April 1997 issue of The New England Journal of Medicine. Appel, L. J., et al. “A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure.,” N Engl J Med 336 (April 1997): 1117–24. In this study, 459 people were randomly assigned to three different groups; one was put on an average American control diet, a second was put on a diet rich in fruits and vegetables, and the third was put on a combination diet rich in fruits, vegetables, and low-fat dairy products with reduced saturated and total fat intake. The groups remained on the diets for eight weeks. Blood pressures were measured before starting the diets and after eight weeks. Results of the study showed that the group on the combination diet had significantly lower blood pressure at the end of eight weeks than those who consumed the control diet. The authors concluded that the combination diet is an effective nutritional approach to treat high blood pressure. The attributes of high-quality clinical interventional trial studies are:

- those that include a control group, which does not receive the intervention, to which you can compare the people who receive the intervention being tested;
- those in which the subjects are randomized into the group or intervention group, meaning a given subject has an equal chance of ending up in either the control group or the intervention group. This is done to ensure that any possible confounding variables are likely to be evenly distributed between the control and the intervention groups;
- those studies that include a sufficient number of participants.

What are confounding variables? These are factors other than the one being tested that could influence the results of the study. For instance, in the study, we just considered, if one group of adults did less physical activity than the other, then it could be the amount of physical activity rather than the diet being tested that caused the differences in blood pressures among the groups.

The limitations of these types of scientific studies are that they are difficult to carry on for long periods of time, are costly, and require that participants remain compliant with the intervention. Furthermore, it is unethical to study certain interventions. (An example of an unethical intervention would be to advise one group of pregnant mothers to drink alcohol to determine the effects of alcohol intake on pregnancy outcome because we know that alcohol consumption during pregnancy damages the developing fetus.)

Randomized clinical interventional trial studies are powerful tools to provide supporting evidence for a particular relationship and are considered the “gold standard” of scientific studies. A randomized clinical interventional trial is a study in which participants are assigned by chance to separate groups that compare different treatments. Neither the researchers nor the participants can choose which group a participant is assigned. However, from their limitations, it is clear that epidemiological studies complement interventional clinical trial studies and both are necessary to construct strong foundations of scientific evidence for health promotion and disease prevention.

Other scientific studies used to provide supporting evidence for a hypothesis include laboratory studies conducted on animals or cells. An advantage of this type of study is that they typically do not cost as much as human studies and they require less time to conduct. Other advantages are that researchers have more control over the environment and the
number of confounding variables can be significantly reduced. Moreover, animal and cell studies provide a way to study relationships at the molecular level and are also helpful in determining the exact mechanism by which a specific nutrient causes a change in health. The disadvantage of these types of studies is that researchers are not working with whole humans and thus the results may not be relevant. Nevertheless, well-conducted animal and cell studies that can be repeated by multiple researchers and obtain the same conclusion are definitely helpful in building the evidence to support a scientific hypothesis.

Evolving Science

Science is always moving forward, albeit sometimes slowly. One study is not enough to make a guideline or a recommendation or cure a disease. Science is a stepwise process that builds on past evidence and finally culminates in a well-accepted conclusion. Unfortunately, not all scientific conclusions are developed in the interest of human health and it is important to know where a scientific study was conducted and who provided the money. Indeed, just as an air quality study paid for by a tobacco company diminishes its value in the minds of readers, so does one on red meat performed at a laboratory funded by a national beef association.

Science can also be contentious even amongst experts that don’t have any conflicting financial interests. To see scientists debating over the nutritional guidelines, watch Video \(PageIndex{1}\). Contentious science is actually a good thing as it forces researchers to be of high integrity, well-educated, well-trained, and dedicated. It also instigates public health policymakers to seek out multiple sources of evidence in order to support a new policy. An agreement involving many experts across multiple scientific disciplines is necessary for recommending dietary changes to improve health and prevent disease. Although a somewhat slow process, it is better for our health to allow the evidence to accumulate before incorporating some change in our diet.
Nutritional Science Evolution

One of the newest areas in the realm of nutritional science is the scientific discipline of nutritional genetics, also called nutrigenomics. Genes are part of DNA and contain the genetic information that makes up all our traits. Genes are codes for proteins and when they are turned "on" or "off," they change how the body works. While we know that health is defined as more than just the absence of disease, there are currently very few accurate genetic markers of good health. Rather, there are many more genetic markers for disease. However, science is evolving and nutritional genetics aims to identify what nutrients to eat to “turn on” healthy genes and “turn off” genes that cause disease. Eventually, this field will progress so that a person’s diet can be tailored to their genetics. Thus, your DNA will determine your optimal diet.
Video (PageIndex(2)): Nutrigenomics: A dietitian describes the new scientific discipline of nutrigenomics and its potential impact on diet and health.

Using Science and Technology to Change the Future

As science evolves, so does technology. Both can be used to create a healthy diet, optimize health, and prevent disease. Picture yourself not too far into the future: you are wearing a small “dietary watch” that painlessly samples your blood, and downloads the information to your cell phone, which has an app that evaluates the nutrient profile of your blood and then recommends a snack or dinner menu to assure you maintain adequate nutrient levels. What else is not far off? How about another app that provides a shopping list that adheres to all dietary guidelines and is emailed to the central server at your local grocer who then delivers the food to your home? The food is then stored in your smart fridge which documents your daily diet at home and delivers your weekly dietary assessment to your home computer (FigurePageIndex(1)). At your computer, you can compare your diet with other diets aimed at weight loss, optimal strength training, reduction in risk for specific diseases or any other health goals you may have. You may also delve into the field of nutritional genetics and download your gene expression profiles to a database that analyzes yours against millions of others.
Key Takeaways

- The scientific method is an organized process of inquiry used in nutritional science to determine if the food suspect fits the claim.
- The scientific method is part of the overall evidence-based approach to designing nutritional guidelines that are based on facts.
- There are different types of scientific studies—epidemiological studies, randomized clinical interventional trial studies, and laboratory animal and cell studies—which all provide different, complementary lines of evidence.
- It takes time to build scientific evidence that culminates as a commonly accepted conclusion.
- Agreement of experts across multiple scientific disciplines is a necessity for recommending dietary changes to improve health and help to prevent disease.
- Science is always evolving as more and more information is collected.

Discussion Starters

1. What are some of the ways in which you think like a scientist and use the scientific method in your everyday life? Any decision-making process uses at least pieces of the scientific method. Think about some of the major decisions you have made in your life and the research you conducted that supported your decision. For example, what computer brand do you own? Where is your money invested? What college do you attend?
2. Do you use technology, appliances, and/or apps that help you to optimize your health?