4.5: Anaerobic Exercise

Anaerobic exercise is a physical exercise intense enough to cause lactate to form. It is used by athletes in non-endurance sports to promote strength, speed and power and by bodybuilders to build muscle mass. Muscle energy systems trained using anaerobic exercise develop differently compared to aerobic exercise, leading to greater performance in short duration, high-intensity activities, which last from mere seconds to up to about 2 minutes. Any activity lasting longer than about two minutes has a large aerobic metabolic component.

![Figure 15.4.1: Exercise work zones (Fox and Haskell formula between 20 and 70-year-old): VO2Max (red zone), anaerobic, aerobic, weight control and moderate activity. (CC BY-Sa 3.0; Morgoth666)](https://med.libretexts.org/Courses/American_Public_University/APU%3A_Basic_Foundation_of_Nutrition_for_Sports_Perform…)

Metabolism

Anaerobic metabolism, or anaerobic energy expenditure, is a natural part of whole-body metabolic energy expenditure. Fast twitch muscle (as compared to slow twitch muscle) operates using anaerobic metabolic systems, such that any
recruitment of fast twitch muscle fibers leads to increased anaerobic energy expenditure. Intense exercise lasting upwards of about four minutes (e.g., a mile race) may still have a considerable anaerobic energy expenditure component. High-intensity interval training, although based on aerobic exercises like running, cycling and rowing, effectively becomes anaerobic when performed in excess of 90% maximum heart rate. Anaerobic energy expenditure is difficult to accurately quantify, although several reasonable methods to estimate the anaerobic component to exercise are available.

In contrast, aerobic exercise includes lower intensity activities performed for longer periods of time. Activities such as walking, long slow runs, rowing, and cycling require a great deal of oxygen to generate the energy needed for prolonged exercise (i.e., aerobic energy expenditure). In sports which require repeated short bursts of exercise however, the anaerobic system enables muscles to recover for the next burst. Therefore training for many sports demands that both energy producing systems be developed.

The two types of anaerobic energy systems are:

1. high energy phosphates, adenosine triphosphate and creatine phosphate; and
2. anaerobic glycolysis.

The former is called alactic anaerobic and the latter lactic anaerobic system. High energy phosphates are stored in limited quantities within muscle cells. Anaerobic glycolysis exclusively uses glucose (and glycogen) as a fuel in the absence of oxygen, or more specifically when ATP is needed at rates that exceed those provided by aerobic metabolism. The consequence of such rapid glucose breakdown is the formation of lactic acid (or more appropriately, its conjugate base lactate at biological pH levels). Physical activities that last up to about thirty seconds rely primarily on the former, ATP-CP phosphagen system. Beyond this time both aerobic and anaerobic glycolysis-based metabolic systems begin to predominate.

The by-product of anaerobic glycolysis, lactate, has traditionally been thought to be detrimental to muscle function. However, this appears likely only when lactate levels are very high. Elevated lactate levels are only one of many changes that occur within and around muscle cells during intense exercise that can lead to fatigue. Fatigue, that is muscle failure, is a complex subject. Elevated muscle and blood lactate concentrations are a natural consequence of any physical exertion. The effectiveness of anaerobic activity can be improved through training.

References

Contributors

- Wikipedia