Skip to main content
Medicine LibreTexts

3.9: Changes in the CR System

  • Page ID
    11133
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    An improvement in CR functioning, or fitness level, requires adaptation of the system. Remember, the point is to more effectively generate ATP so more work can be accomplished. In order to process more oxygen and deliver more oxygenated blood to the cells, the overall system must undergo changes to make this possible. Here is a list of adaptations that occur to the CR system as a result of consistent aerobic exercise:

    • Resting heart rate may decrease. The average resting heart rate hovers around 70–75 beats per minute. Elite athletes may have resting heart rates in the high 30s. Generally, resting heart rate may decrease by approximately 10 beats per minute with chronic exercise.
    • Pulmonary adaptations, such as increased tidal volume (the amount of oxygen entering the lungs with each breath) and increased diffusion capacity (the amount of oxygen that enters the blood stream from the lungs). This allows for more oxygen to enter the pulmonary circulation en route to the left side of the heart.
    • The heart muscles, specifically the left side of the heart, increase in size making it possible to contract more forcefully. As a result, more blood can be pumped with each beat meaning more oxygen can be routed to the systemic circulation.
    • More oxygen is delivered and transported into the cells where ATP production can occur. This is called the arterial-vein difference (a-VO2diff)

    These changes in the system are not permanent because of a process known as the principle of reversibility. Following a period of inactivity, the benefits from chronic aerobic exercise will be reversed.


    This page titled 3.9: Changes in the CR System is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Flynn et al. (GALILEO Open Learning Materials) .

    • Was this article helpful?