1.16: Statistics and Reference Ranges
- Page ID
- 38596
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Presuming there is a healthy and a diseased population, which fact is not true?:
- healthy and disease values overlap
- healthy and disease cut off points will determine the number of false positives
- healthy and disease values are always clearly separated
- healthy and disease cut off points will determine false negatives
- healthy and disease values are a continuum
- What is a minimum number of samples to obtain a good reference range?:
- 20
- 40
- 120
- 200
- 500
- The mean of a series of results is 100 mg/L and the standard deviation is 2 mg/L. The percent coefficient of variation of this analysis is:
- 0.5
- 1
- 2
- 4
- 8
- Test A correctly identified 17/100 true positives while correctly identifying 90/100 true negatives. Test B correctly identified 55/100 true positives while correctly identifying 80/100 true negatives. Which of the following statements is true?:
- Test A has a better sensitivity and specificity
- Test B has a better sensitivity and specificity
- Test A has a better sensitivity but a worse specificity
- Test B has a better sensitivity but a worse specificity
- Tests A and B have equal sensitivities and specificities
- The 95% confidence limits for Ca++ in control sera were established as 9.2-10.2 mg/L. The standard deviation is:
- 0.1 mg/L
- 0.2 mg/L
- 0.25 mg/L
- 0.5 mg/L
- 1.0 mg/L
- What percentage of tests should fall within ± one standard deviation if the distribution for the population is considered normal?:
- 28
- 35
- 68
- 45
- 95
- Precision applied to chemistry determination means the same as:
- accuracy
- reproducibility
- recovery
- conformance with Beer’s Law
- The following set of values was obtained for K+ concentration for a quality control sample: 4.7, 3.9, 4.0, 4.1, 4.3, 4.5, 3.9, 4.2, 4.2, 4.6, 4.0, 3.9, 4.6, 3.8, 4.2, 4.5, 4.1, 4.7, 3.9, 4.8. The mean for this population of data is:
- 4.0
- 4.1
- 4.2
- 4.4
- 4.6
- A 95% confidence limit for cholesterol precision was found to be 1300-1500 mg/L. The coefficient of variation for this methodology is:
- 1.23%
- 3.57%
- 7.14%
- 14.28%
- 28.56%
Use the following Key to answer Questions 10-14:
- 1, 2, and 3 are correct
- 1 and 3 are correct
- 2 and 4 are correct
- 4 only is correct
- all are correct
- A normal value is usually defined as:
- a result from a healthy person
- a gaussian distribution
- a usual laboratory value
- the results of a t-test
- Reference populations should be defined in terms of:
- age
- sex
- race
- genetic background
- The positive predictive value (accuracy) of a test varies with:
- test sensitivity
- disease prevalence
- test specificity
- test linear range
- The means and standard deviations of methods A and B are XA = 80, SDA= 6; XB = 40, SDB = 1.5. The following statements are true about these 2 methods:
- there is no apparent bias between the 2 methods
- method A is less precise than method B
- there is no difference in precision between the two methods
- there appears to be a bias between the two methods
- An indication of the spread of the distribution of a set of measurements is given by the:
- range
- variance
- standard deviation
- mean
- A test has a sensitivity of 95% and a specificity of 80%, and a positive predictive value of 50%. If a result of this test was positive (i.e., abnormal), then the likelihood that disease was present is:
- 95 out of 100
- 80 out of 100
- 50 out of 100
- 20 out of 100
- none of the above
- A useful test to determine a statistical difference between the means of two different populations is the:
- F-test
- t-test
- chi-square test
- linear regression test
- variance test
- A receiver-operating characteristic (ROC) curve is used to graphically display:
- Linearity of a new method
- Differences between variances of two methods
- Correlation (regression) between methods
- Ability of a test to discriminate between disease and non-disease
- The distributions of diseased and non-diseased populations
- Answer
-
- c (p. 364-365)
- c (p. 369)
- c (p. 345)
- d (p. 374)
- c (p. 346)
- c (p. 346)
- b (p. 348)
- c (p. 344)
- b (p. 346-347)
- b (p. 342, 364)
- e (p. 366)
- a (p. 372-373)
- c (p. 348-349)
- a (p. 345)
- c (p. 373)
- b (p. 349)