Skip to main content
Medicine LibreTexts

4.1: Calculations

  • Page ID
    38665
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A medical technologist is performing the following assay for a drug whose molecular weight is 318.5 daltons. A 2 mL aliquot of serum is extracted into 5 mL of diethyl ether. It has been established that the extraction efficiency of the analyte into ether is 85%. Four mL of the ether layer is transferred to a test tube and evaporated to dryness at 37°C under a stream of nitrogen gas. The residue is taken up in 2 mL of a reagent that shifts the absorbance maxima of the analyte to 310 nm. After 10 minutes incubation at 37°C, the absorbance of the solution is measured at 310 nm using a spectrophotometer with a 1 cm pathlength. The recorded absorbance is 2.475. Since this absorbance exceeds the linearity of the instrument, the absorbance is measured on a 1:10 dilution of the sample. The absorbance of the diluted sample is recorded as 0.475. The molar extinction coefficient of the analyte at 310 nm is 18.7 x 103 L•mol-1•cm-1.

    QUESTION

    What is the concentration of the drug in the original serum sample in mg/L.

    Answer

    The serum concentration of this drug is:________ mg/L.

    Answer
    1. First calculate the concentration of the analyte in the final solution using Beer’s law as follows (p. 88): A = \(\epsilon\)cb; where \(\epsilon\) = 18.7 x 103 L • mol-1 • cm-1, c = unknown, b = 1 cm, and A = 0.475. $$\begin{split} 0.475 &= 18.7 \times 10^{3}\; L \cdot mol^{-1} \cdot cm^{-1}\; (1\; cm) \times c \\ c &= 0.0254 \times 10^{-3}\; mol/L \\ & \quad or \\ c &= 0.0254\; mmol/L \end{split}$$Since this absorbance was obtained on a 1:10 dilution, the actual concentration in the 2 mL sample is: $$c = 0.0254\; mmol/L \times 10 = 0.254\; mmol/L$$
    2. Now calculate the amount of material extracted (p. 34-37). The concentration is 0.254 mmol/L in the 2 mL sample, and the total amount of analyte extracted is: $$\text{concentration} \times \text{sample volume} = \text{amount}$$
    3. The micromoles of analyte extracted in part b were originally in a 4 mL aliquot of ether which represents 4/5 of the total volume into which the analyte was extracted. Thus, the actual total amount extracted from the 2 mL serum aliquot is: $$0.508\; \mu mol/ \; 4\; mL \times 5\; mL = 0.635\; \mu mol\; extracted\; from\; 2\; mL\; of\; serum$$
    4. Since the extraction efficiency is only 85%, the total analyte extracted must be corrected for the 15% of the analyte that was not extracted. This is calculated as follows: $$\frac{\text{amount extracted}}{\text{efficiency of extraction}} = \text{actual amount present in sample} = \frac{0.635}{0.85} = 0.747\; \mu moles$$Thus, the analyte concentration in the 2 mL of serum is: $$\frac{0.747\; \mu moles\; extracted}{2\; mL\; of\; sample} = 0.37\; \mu mol/mL$$
    5. To calculate (pp. 35-37) the analyte concentration in the serum sample in
      mg/L use the following conversion formula: $$\frac{\mu mol}{mL} \times \frac{1000\; mL}{L} \times mol.\; wt.\; (\mu g/mol) \times \frac{1\; mg}{1000\; \mu g} = mg/L$$Thus $$\frac{0.37\; \mu mol}{mL} \times \frac{1000\; mL}{L} \times 318.5\; \mu g/ \mu mol \times \frac{1\; mg}{1000\; \mu g} = 118\; mg/L$$The serum concentration of the drug is 118 mg/L (0.37 mol/L).

    This page titled 4.1: Calculations is shared under a not declared license and was authored, remixed, and/or curated by Lawrence Kaplan & Amadeo Pesce.

    • Was this article helpful?