20.11: Review Questions
- Page ID
- 69349
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The endothelium is found in the ________.
- tunica intima
- tunica media
- tunica externa
- lumen
Nervi vasorum control ________.
- vasoconstriction
- vasodilation
- capillary permeability
- both vasoconstriction and vasodilation
Closer to the heart, arteries would be expected to have a higher percentage of ________.
- endothelium
- smooth muscle fibers
- elastic fibers
- collagenous fibers
Which of the following best describes veins?
- thick walled, small lumens, low pressure, lack valves
- thin walled, large lumens, low pressure, have valves
- thin walled, small lumens, high pressure, have valves
- thick walled, large lumens, high pressure, lack valves
An especially leaky type of capillary found in the liver and certain other tissues is called a ________.
- capillary bed
- fenestrated capillary
- sinusoid capillary
- metarteriole
In a blood pressure measurement of 110/70, the number 70 is the ________.
- systolic pressure
- diastolic pressure
- pulse pressure
- mean arterial pressure
A healthy elastic artery ________.
- is compliant
- reduces blood flow
- is a resistance artery
- has a thin wall and irregular lumen
Which of the following statements is true?
- The longer the vessel, the lower the resistance and the greater the flow.
- As blood volume decreases, blood pressure and blood flow also decrease.
- Increased viscosity increases blood flow.
- All of the above are true.
Slight vasodilation in an arteriole prompts a ________.
- slight increase in resistance
- huge increase in resistance
- slight decrease in resistance
- huge decrease in resistance
Venoconstriction increases which of the following?
- blood pressure within the vein
- blood flow within the vein
- return of blood to the heart
- all of the above
Hydrostatic pressure is ________.
- greater than colloid osmotic pressure at the venous end of the capillary bed
- the pressure exerted by fluid in an enclosed space
- about zero at the midpoint of a capillary bed
- all of the above
Net filtration pressure is calculated by ________.
- adding the capillary hydrostatic pressure to the interstitial fluid hydrostatic pressure
- subtracting the fluid drained by the lymphatic vessels from the total fluid in the interstitial fluid
- adding the blood colloid osmotic pressure to the capillary hydrostatic pressure
- subtracting the blood colloid osmotic pressure from the capillary hydrostatic pressure
Which of the following statements is true?
- In one day, more fluid exits the capillary through filtration than enters through reabsorption.
- In one day, approximately 35 mm of blood are filtered and 7 mm are reabsorbed.
- In one day, the capillaries of the lymphatic system absorb about 20.4 liters of fluid.
- None of the above are true.
Clusters of neurons in the medulla oblongata that regulate blood pressure are known collectively as ________.
- baroreceptors
- angioreceptors
- the cardiomotor mechanism
- the cardiovascular center
In the renin-angiotensin-aldosterone mechanism, ________.
- decreased blood pressure prompts the release of renin from the liver
- aldosterone prompts increased urine output
- aldosterone prompts the kidneys to reabsorb sodium
- all of the above
In the myogenic response, ________.
- muscle contraction promotes venous return to the heart
- ventricular contraction strength is decreased
- vascular smooth muscle responds to stretch
- endothelins dilate muscular arteries
A form of circulatory shock common in young children with severe diarrhea or vomiting is ________.
- hypovolemic shock
- anaphylactic shock
- obstructive shock
- hemorrhagic shock
The coronary arteries branch off of the ________.
- aortic valve
- ascending aorta
- aortic arch
- thoracic aorta
Which of the following statements is true?
- The left and right common carotid arteries both branch off of the brachiocephalic trunk.
- The brachial artery is the distal branch of the axillary artery.
- The radial and ulnar arteries join to form the palmar arch.
- All of the above are true.
Arteries serving the stomach, pancreas, and liver all branch from the ________.
- superior mesenteric artery
- inferior mesenteric artery
- celiac trunk
- splenic artery
The right and left brachiocephalic veins ________.
- drain blood from the right and left internal jugular veins
- drain blood from the right and left subclavian veins
- drain into the superior vena cava
- all of the above are true
The hepatic portal system delivers blood from the digestive organs to the ________.
- liver
- hypothalamus
- spleen
- left atrium
Blood islands are ________.
- clusters of blood-filtering cells in the placenta
- masses of pluripotent stem cells scattered throughout the fetal bone marrow
- vascular tubes that give rise to the embryonic tubular heart
- masses of developing blood vessels and formed elements scattered throughout the embryonic disc
Which of the following statements is true?
- Two umbilical veins carry oxygen-depleted blood from the fetal circulation to the placenta.
- One umbilical vein carries oxygen-rich blood from the placenta to the fetal heart.
- Two umbilical arteries carry oxygen-depleted blood to the fetal lungs.
- None of the above are true.
The ductus venosus is a shunt that allows ________.
- fetal blood to flow from the right atrium to the left atrium
- fetal blood to flow from the right ventricle to the left ventricle
- most freshly oxygenated blood to flow into the fetal heart
- most oxygen-depleted fetal blood to flow directly into the fetal pulmonary trunk