Skip to main content
Library homepage
Loading table of contents menu...
Medicine LibreTexts

4.1: Introduction

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    How do we learn to read, do math, and play sports? Learning in a neural network amounts to the modification of synaptic weights, in response to the local activity patterns of the sending and receiving neurons. As emphasized in previous chapters, these synaptic weights are what determine what an individual neuron detects, and thus are the critical parameters for determining neuron and network behavior.

    In other words, everything you know is encoded in the patterns of your synaptic weights, and these have been shaped by every experience you've had (as long as those experiences got your neurons sufficiently active). Many of those experiences don't leave a very strong mark, and in much of the brain, traces of individual experiences are all blended together, so it is difficult to remember them distinctly (we'll see in the Memory Chapter that this blending can be quite beneficial for overall intelligence, actually). But each experience nevertheless drives some level of learning, and our big challenge in this chapter is to figure out how the mere influences of patterns of activity among individual neurons can add up to enable us to learn big things.

    Biologically, synaptic plasticity (the modification of synaptic weights through learning) has been extensively studied, and we now know a tremendous amount about the detailed chemical processes that take place as a result of neural activity. We'll provide multiple levels of detail here (including a discussion of spike timing dependent plasticity (STDP), which has captured the imaginations of many researchers in this area), but the high-level story is fairly straightforward: the overall level of neural activity on both ends of the synapse (sending and receiving neural firing) drives the influx of calcium ions (Ca++) via NMDA channels, and synaptic weight changes are driven by the level of postsynaptic Ca++ in the dendritic spine associated with a given synapse. Low levels of Ca++ cause synapses to get weaker, and higher levels cause them to get stronger.

    Computationally, many different sets of equations have been developed that can drive synaptic weight changes to accomplish many different computational goals. Which of these correspond to what the biology is actually doing? That is the big question. While a definitive answer remains elusive, we nevertheless have a reasonable candidate that aligns well with the biological data, and also performs computationally very useful forms of learning, which can solve the most challenging of cognitive tasks (e.g., learning to read or recognize objects).

    There are two primary types of learning:

    • Self-organizing learning, which extracts longer time-scale statistics about the environment, and can thus be useful for developing an effective internal model of the outside world (i.e., what kinds of things tend to reliably happen in the world -- we call these statistical regularities).
    • Error-driven learning, which uses more rapid contrasts between expectations and outcomes to correct these expectations, and thus form more detailed, specific knowledge about contingencies in the world. For example, young children seem endlessly fascinated learning about what happens when they push stuff off their high chair trays: will it still fall to the ground and make a huge mess this time? Once they develop a sufficiently accurate expectation about exactly what will happen, it starts to get a bit less interesting, and other more unpredictable things start to capture their interest. As we can see in this example, error-driven learning is likely intimately tied up with curiosity, surprise, and other such motivational factors. For this reason, we hypothesize that neuromodulators such as dopamine, norepinephrine and acetylcholine likely play an important role in modulating this form of learning, as they have been implicated in different versions of surprise, that is, when there is a discrepancy between expectations and outcomes.

    Interestingly, the main computational difference between these two forms of learning has to do with the time scale over which one of the critical variables is updated -- self-organizing learning involves averaging over a long time scale, whereas error-driven learning is much quicker. This difference is emphasized in the above descriptions as well, and provides an important source of intuition about the differences between these types of learning. Self-organizing learning is what happens when you blur your eyes and just take stuff in over a period of time, whereas error-driven learning requires much more alert and rapid forms of neural activity. In the framework that we will use in the rest of the book, we combine these types of learning into a single set of learning equations, to explore how we come to perceive, remember, read, and plan.

    This page titled 4.1: Introduction is shared under a CC BY-SA license and was authored, remixed, and/or curated by O'Reilly, Munakata, Hazy & Frank.

    • Was this article helpful?