Skip to main content
Medicine LibreTexts

4.11.4: Sulfur

  • Page ID
    49695
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Sulfur is incorporated into protein structures in the body. Amino acids, methionine and cysteine contain sulfur which are essential for the antioxidant enzyme glutathione peroxidase. Some vitamins like thiamin and biotin also contain sulfur which are important in regulating acidity in the body. Sulfur is a major mineral with no recommended intake or deficiencies when protein needs are met. Sulfur is mostly consumed as a part of dietary proteins and sulfur containing vitamins.

    Sulfur’s Functional Role

    Sulfur is the third most abundant mineral in our body after calcium and phosphorus.[1] Sulfur is incorporated into protein structures in the body such as keratin in hair and provides stabilization to these protein structures. One of it’s key roles is the synthesis of 3’-phosphoadenosine-5’phosphosulfate (PAPS)[2] which is used in the biosynthesis of compounds essential in chondroitin in bones and cartilage, heparin and insulin.[3] Additionally, sulfur is an important component of the antioxidant enzyme glutathione peroxidase. Excess cysteine and methionine are oxidized to sulfate and excreted in the urine or stored as glutathione.[4]

    Dietary Reference Intakes for Sulfur

    Sulfur is a major mineral with no recommended intake. Deficiencies are not found in those that meet protein requirements or in those with adequate consumption of sulfur-containing amino acids. Adverse effects were reported in individuals that ingest water sources with high levels of inorganic sulfur. Osmotic diarrhea may result and is of particular concern in infants. Animal studies showed that growth is stunted with inadequate sulfur intake from foods and beverages. Current data is insufficient to establish a Tolerable Upper Intake Level (UL).[5]

    Dietary Sources of Sulfur

    Dietary sources mainly come from sulfur-containing amino acids methionine and cysteine. Some vitamins like thiamin and biotin contain sulfur which are important in regulating acidity in the body. Sulfur can also be obtained from sulfur-containing foods such as garlic, onion and cruciferous vegetables.[6] Tap water also supplies sulfur but its concentration varies depending on location.[7] Dietary supplements such as chondroitin sulfate or glucosamine sulfate commonly used to aid bone and joint health also contain sulfur.[8]

    Table \(\PageIndex{1}\): Sulfur Content in Various Foods
    Food Serving Methionine (mg) Cystine (mg)
    Turkey breast 1 breast 7102 2442
    Brazil nuts 1 cup 1495 407
    Canned tuna 1 cup 1259 456
    Swiss Cheese, diced 1 cup 1035 383
    Canned green peas 1 can 257 0.172
    Egg, whole 1 large 189 136
    Dried peaches 1 cup 139 46
    Sweet potatoes 1 cup 134 43
    Russet potatoes, baked 1 large potato (3” to 4-¼” diameter) 123 93
    Whole-grain bread 1 slice 36 46
    Broccoli ½ cup 34 24
    Cauliflower ½ cup 16 13

    Source: USDA Standard Reference Legacy Nutrient Search

    Query \(\PageIndex{1}\)

    References

    1. Nimni, M. E., Han, B., & Cordoba, F. (2007). Are we getting enough sulfur in our diet?. Nutrition & Metabolism, 4,24. doi.org/10.1186/1743-7075-4-24. ↵
    2. Weiss, M., Steiner, D. F., & Philipson, L. H. (2000). Insulin biosynthesis, secretion, structure, and structure-activity relationships. In K. R. Feingold (Eds.) et. al., Endotext. MDText.com, Inc. ↵
    3. Weiss, M., Steiner, D. F., & Philipson, L. H. (2000). Insulin biosynthesis, secretion, structure, and structure-activity relationships. In K. R. Feingold (Eds.) et. al., Endotext. MDText.com, Inc. ↵
    4. Nimni, M. E., Han, B., & Cordoba, F. (2007). Are we getting enough sulfur in our diet?. Nutrition & Metabolism, 4,24. https://doi.org/10.1186/1743-7075-4-24. ↵
    5. Institute of Medicine. (2006). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press. https://doi.org/10.17226/11537. ↵
    6. Institute of Medicine. (2006). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press. https://doi.org/10.17226/11537. ↵
    7. Doleman, J. F., Grisar, K., Van Liedekerke, L., Saha, S., Roe, M., Tapp, H. S., & Mithen, R. F. (2017). The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake. Food Chemistry, 234, 38–45. https://doi.org/10.1016/j.foodchem.2017.04.098. ↵
    8. Nimni, M. E., Han, B., & Cordoba, F. (2007). Are we getting enough sulfur in our diet?. Nutrition & Metabolism, 4,24. https://doi.org/10.1186/1743-7075-4-24. ↵

    This page titled 4.11.4: Sulfur is shared under a CC BY-NC-ND 4.0 license and was authored, remixed, and/or curated by Jennifer Draper, Marie Kainoa Fialkowski Revilla, & Alan Titchenal via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.