Skip to main content
Medicine LibreTexts

4.4: The CR System and Energy Production

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Clearly the cardiovascular and respiratory systems function as one, but why is the CR system so important? What makes the distribution of oxygen throughout the body so vital to existence? The answer is simple: ENERGY. While oxygen in and of itself does not contain any energy (calories), it does combine with fuel extracted from food once it has been introduced into the cell to help produce adenosine triphosphate (ATP). ATP is the basic form of cellular energy found in the body. Because the body stores very little ATP, it must constantly be regenerated. For this reason, people must continue eating and breathing to live.

    Within the context of fitness, the purpose of the cardiorespiratory system is not only to produce energy but to also adapt in a way so that energy production can be optimized. For example, a high school cross country runner wants to be fit enough to compete in the state cross country meet. Unfortunately, this athlete’s current mile times are 6 minutes per mile. In other words, that is the maximum work rate possible for this athlete. However, the goal is to improve to 5 minutes per mile, or improve the maximum work rate. To do so, more energy must be produced. According to the principles of adaptation, it is possible for this athlete to become more efficient at producing energy, enabling him to run a mile in less time. An example of this adaptation comes from the world record mile time of 3 minutes and 43 seconds. The world record marathon time (26.2 miles) is 2 hours, 2 minutes, and 52 seconds. That equates to 4 minutes and 41 seconds per mile over the 26-mile course. That is some serious ATP production!

    4.4: The CR System and Energy Production is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?