Skip to main content
Medicine LibreTexts

11.6: Food Preservation

  • Page ID
    12310
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Food preservation involves preventing the growth of bacteria, fungi (such as yeasts), or other micro-organisms (although some methods work by introducing benign bacteria or fungi to the food), as well as slowing the oxidation of fats that cause rancidity. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation.

    Many processes designed to preserve food will involve a number of food preservation methods. Preserving fruit by turning it into jam, for example, involves boiling (to reduce the fruit’s moisture content and to kill bacteria, etc.), sugaring (to prevent their re-growth) and sealing within an airtight jar (to prevent recontamination). Some traditional methods of preserving food have been shown to have a lower energy input and carbon footprint, when compared to modern methods.

    Maintaining or creating nutritional value, texture and flavor is an important aspect of food preservation, although, historically, some methods drastically altered the character of the food being preserved. In many cases these changes have come to be seen as desirable qualities – cheese, yogurt and pickled onions being common examples.

    Traditional techniques

    New techniques of food preservation became available to the home chef from the dawn of agriculture until the Industrial Revolution.

    Drying

    Drying is one of the oldest techniques used to hamper the decomposition of food products. As early as 12,000 B.C., Middle Eastern and Oriental cultures were drying foods using the power of the sun. Vegetables and fruits are naturally dried by the sun and wind, but "still houses" were built in areas that did not have enough sunlight to dry things. A fire would be built inside the building to provide the heat to dry the various fruits, vegetables, and herbs.

    Cooling

    Cooling preserves food by slowing down the growth and reproduction of micro-organisms and the action of enzymes that cause food to rot. The introduction of commercial and domestic refrigerators drastically improved the diets of many in the Western world by allowing foods such as fresh fruit, salads and dairy products to be stored safely for longer periods, particularly during warm weather.

    Freezing

    Freezing is also one of the most commonly used processes, both commercially and domestically, for preserving a very wide range of foods, including prepared foods that would not have required freezing in their unprepared state. For example, potato waffles are stored in the freezer, but potatoes themselves require only a cool dark place to ensure many months' storage. Cold stores provide large-volume, long-term storage for strategic food stocks held in case of national emergency in many countries.

    Boiling

    Boiling liquid food items can kill any existing microbes. Milk and water are often boiled to kill any harmful microbes that may be present in them.

    Heating

    Heating to temperatures which are sufficient to kill microorganisms inside the food is a method used with perpetual stews. Milk is also boiled before storing to kill many microorganisms.

    Salting

    Bag of Prague powder #1, also known as "curing salt" or "pink salt". It is typically a combination of salt and sodium nitrite, with the pink color added to distinguish it from ordinary salt. Salting or curing draws moisture from a substance through a process of osmosis. substances are cured with salt or sugar, or a combination of the two. Nitrates and nitrites are also often used to cure meat and contribute the characteristic pink colour. It was a main method of preservation in medieval times and around the 1700s.

    Sugaring

    The earliest cultures have used sugar as a preservative, and it was commonplace to store fruit in honey. Similar to pickled foods, sugar cane was brought to Europe through the trade routes. In northern climates without sufficient sun to dry foods, preserves are made by heating the fruit with sugar. "Sugar tends to draw water from the microbes (plasmolysis). This process leaves the microbial cells dehydrated, thus killing them. In this way, the food will remain safe from microbial spoilage."Sugar is used to preserve fruits, either in an anti-microbial syrup with fruit such as apples, pears, peaches, apricots and plums, or in crystallized form where the preserved material is cooked in sugar to the point of crystallization and the resultant product is then stored dry. This method is used for the skins of citrus fruit (candied peel), angelica and ginger. Also sugaring can be used in jam jellies.

    Smoking

    Smoking is used to lengthen the shelf life of perishable food items. This effect is achieved by exposing the food to smoke from burning plant materials such as wood. Smoke deposits a number of pyrolysis products onto the food, including the phenols syringol, guaiacol and catechol. These compounds aid in the drying and preservation of meats and other foods. Most commonly subjected to this method of food preservation are meats and fish that have undergone curing. Fruits and vegetables like paprika, cheeses, spices, and ingredients for making drinks such as malt and tealeaves are also smoked, but mainly for cooking or flavoring them. It is one of the oldest food preservation methods, which probably arose after the development of cooking with fire.

    Pickling

    Pickling is a method of preserving food in an edible anti-microbial liquid. Pickling can be broadly classified into two categories: chemical pickling and fermentation pickling. In chemical pickling, the food is placed in an edible liquid that inhibits or kills bacteria and other micro-organisms. Typical pickling agents include brine (high in salt), vinegar, alcohol, and vegetable oil, especially olive oil but also many other oils. Many chemical pickling processes also involve heating or boiling so that the food being preserved becomes saturated with the pickling agent. Common chemically pickled foods include cucumbers, peppers, corned beef, herring, and eggs, as well as mixed vegetables such as piccalilli.

    In fermentation pickling, the food itself produces the preservation agent, typically by a process that produces lactic acid. Fermented pickles include sauerkraut, nukazuke, kimchi, surströmming,

    Lye

    Sodium hydroxide (lye) makes food too alkaline for bacterial growth. Lye will saponify fats in the food, which will change its flavor and texture. Lutefisk uses lye in its preparation, as do some olive recipes. Modern recipes for century eggs also call for lye.

    Canning

    Canning involves cooking food, sealing it in sterile cans or jars, and boiling the containers to kill or weaken any remaining bacteria as a form of sterilization. It was invented by the French confectioner Nicolas Appert. By 1806, this process was used by the French Navy to preserve meat, fruit, vegetables, and even milk. Although Appert had discovered a new way of preservation, it wasn't understood until 1864 when Louis Pasteur found the relationship between microorganisms, food spoilage, and illness.

    Foods have varying degrees of natural protection against spoilage and may require that the final step occur in a pressure cooker. High-acid fruits like strawberries require no preservatives to can and only a short boiling cycle, whereas marginal vegetables such as carrots require longer boiling and addition of other acidic elements. Low-acid foods, such as vegetables and meats, require pressure canning. Food preserved by canning or bottling is at immediate risk of spoilage once the can or bottle has been opened.

    PreservedFood1.jpg

    Figure \(\PageIndex{1}\): Preserved food. Unidentified stacks of home-canned food. (public domain).

    Lack of quality control in the canning process may allow ingress of water or micro-organisms. Most such failures are rapidly detected as decomposition within the can causes gas production and the can will swell or burst. However, there have been examples of poor manufacture (underprocessing) and poor hygiene allowing contamination of canned food by the obligate anaerobe Clostridium botulinum, which produces an acute toxin within the food, leading to severe illness or death. This organism produces no gas or obvious taste and remains undetected by taste or smell. Its toxin is denatured by cooking, however. Cooked mushrooms, handled poorly and then canned, can support the growth of Staphylococcus aureus, which produces a toxin that is not destroyed by canning or subsequent reheating.

    Jellying

    Food may be preserved by cooking in a material that solidifies to form a gel. Such materials include gelatin, agar, maize flour, and arrowrootflour. Some foods naturally form a protein gel when cooked, such as eels and elvers, and sipunculid worms, which are a delicacy in Xiamen, in the Fujian province of the People's Republic of China. Jellied eels are a delicacy in the East End of London, where they are eaten with mashed potatoes. Potted meats in aspic (a gel made from gelatine and clarified meat broth) were a common way of serving meat off-cuts in the UK until the 1950s. Many jugged meats are also jellied.

    Jugging

    Meat can be preserved by jugging. Jugging is the process of stewing the meat (commonly game or fish) in a covered earthenware jug or casserole. The animal to be jugged is usually cut into pieces, placed into a tightly-sealed jug with brine or gravy, and stewed. Red wineand/or the animal's own blood is sometimes added to the cooking liquid. Jugging was a popular method of preserving meat up until the middle of the 20th century.

    Burial

    Burial of food can preserve it due to a variety of factors: lack of light, lack of oxygen, cool temperatures, pH level, or desiccants in the soil. Burial may be combined with other methods such as salting or fermentation. Most foods can be preserved in soil that is very dry and salty (thus a desiccant) such as sand, or soil that is frozen. Many root vegetables are very resistant to spoilage and require no other preservation than storage in cool dark conditions, for example by burial in the ground, such as in a storage clamp. Century eggs are created by placing eggs in alkaline mud (or other alkaline substance), resulting in their "inorganic" fermentation through raised pH instead of spoiling. The fermentation preserves them and breaks down some of the complex, less flavorful proteins and fats into simpler, more flavorful ones. Cabbage was traditionally buried in the fall in northern farms in the U.S. for preservation. Some methods keep it crispy while other methods produce sauerkraut. A similar process is used in the traditional production of kimchi. Sometimes meat is buried under conditions that cause preservation. If buried on hot coals or ashes, the heat can kill pathogens, the dry ash can desiccate, and the earth can block oxygen and further contamination. If buried where the earth is very cold, the earth acts like a refrigerator.

    Contributors and Attributions

    • Wikipedia

    11.6: Food Preservation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?