4.6: Chromatography I
- Page ID
- 38670
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A laboratory is using the GLC chromatography system described in Methods to separate a series of alcohols. The chromatogram has the following appearance: Solvent front, 0.11 min.; Width of elution peaks at baseline absorbance: methanol, 0.1 min.; ethanol, 0.15 min.; isopropanol, 0.20 min.; n-propanol, 0.25 min.; acetone, 0.17 min. The elution times of the major peaks are listed in the figure legend. The laboratory decides to determine if acetone is sufficiently well separated from ethanol.
QUESTIONS
- Is the separation (i.e. resolution) of acetone and ethanol adequate?
- For quality control purposes, the HETP of the column is calculated weekly and compared to the initial value. When the HETP decreases to 70% of the initial value, the column is taken out of service. This column’s initial HETP was 0.083 cm/theoretical plate. Is the current HETP acceptable?
Questions to Consider
- What parameters are needed to calculate resolution?
- Calculate k, the capacity factor, for each of the alcohols using Equation 5-6 on p. 117.
Calculation: $$k = \frac{V_{R} - V_{O}}{V_{O}} = \frac{t_{R} - t_{O}}{t_{O}}$$ - Calculate the alpha factor for ethanol and acetone. (Equation 5-7, p. 117)
Calculation: $$\text{Alpha} = \frac{k_{2}}{k_{1}}$$ - Calculate the number of theoretical plates for the internal standard (Equation 5-3, p. 114).
- Using the calculated and measured parameters, now calculate the resolution, R, using equations 5-2 and 5-10.
- Presume that the column is 200 cm long. What is the HETP? Use Equation 5-4 for this calculation.
- Answer
-
- Since an R greater than 1.25 (p. 112) is considered adequate, by either calculation the resolution between acetone and ethanol is sufficient.
- Since the column’s efficiency has only decreased by 13%, (0.083/0.094), the HETP is acceptable, and the column can remain in service.
Answers to Questions to Consider
- Resolution between two compounds can be calculated by either Equation 5-2 (p.112) or Equation 5-10 (p. 116). Equation 5-2 is a general resolution equation which can be used to calculate resolution directly from the chromatogram using the distances (or time) between the peaks and the peak width. In equation 5-10, resolution is calculated using the theoretical plates of the column, a selectivity factor, and a capacity factor.
- The capacity factor is calculated from the relationship: $$\begin{split} k^{\prime} &= \frac{t_{R} - t_{O}}{t_{O}} \\ &= \frac{0.98 - 0.11}{0.11} = 7.90\; methanol \\ &= \frac{1.33 - 0.11}{0.11} = 11.1\; ethanol \\ &= \frac{2.12 - 0.11}{0.11} = 18.3\; isopropanol \\ &= \frac{2.88 - 0.11}{0.11} = 25.2\; n-propanol \end{split}$$
- $$\begin{split} Acetone\; k^{\prime} &= \frac{1.55 - 0.11}{0.11} = 13.1 \\ Alpha &= \frac{k_{2}^{\prime}}{k_{1}^{\prime}} = \frac{13.1}{11.1} = 1.19 \end{split}$$
- Number of theoretical plates $$N = 16 \left(\dfrac{t_{R}}{W}\right)^{2} = 16 \left(\dfrac{2.88}{0.25}\right)^{2} = 2123$$
- Using Equation 5-2: $$\begin{split} R &= \frac{d_{2} - d_{1}}{0.59(W_{2} + W_{1})} \\ &= \frac{1.55 - 1.33}{0.5(0.15 + 0.17)} \\ &= \frac{0.22}{0.16} \\ &= 1.37 \end{split}$$or 5-10 $$\begin{split} R &= \left(\dfrac{N^{0.5}}{4}\right) \left(\dfrac{\alpha - 1}{\alpha}\right) \left(\dfrac{k_{2}^{\prime}}{(1+k_{2}^{\prime})^{2/3}}\right) \\ &= \left(\dfrac{2123^{0.5}}{4}\right) \left(\dfrac{1.19 - 1}{1.19}\right) \left(\dfrac{13.1}{(1+11.0)^{2/3}}\right) \\ &= 2.02 \end{split}$$
- For a 200 cm column: $$HETP = \frac{200}{2123} = 0.094\; cm/theoretical\; plate$$HETP = total length of stationary phase/# of theoretical plates