6.4: Bicuspid Aortic valve
- Page ID
- 42754
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Bicuspid Aortic valve disease affects as many as 1-2% of the population, and is the most frequent congenital cardiovascular malformation in humans.[30] A bicuspid aortic valve may be part of a phenotypic continuum of congenital aortic valve disorders, associated with unicuspid valves, bicuspid valves, the normal tricuspid valves and the rare quadricuspid forms. Understanding of the pathogenesis of aortic valve malformation remains incomplete.
Bicuspid aortic valves are three to four times more common in men than in women. Bicuspid aortic valve disease results from abnormal cusp formation during valvulogenesis, but coexisting genetic abnormalities of the aorta and proximal coronary vasculature are often present. Moreover, nonvalvular findings occur in up to 50% of patients with bicuspid aortic valves. Associated findings are aortic dilation, aneurysms and dissection.
During valvulogenesis, adjacent cusps of the bicuspid valve fuse to form a single aberrant cusp. This fusion results in large leaflet, yet smaller than 2 normal cusps, with most often a central raphe or ridge. Fusion of the right coronary and noncoronary cusps is associated with cuspal pathology. Fusion of the right and left coronary cusps is associated with coarctation of the aorta.
Although endocarditis can be a devastating complication of bicuspid aortic valve disease, straightforward bicuspid aortic valve disease is no longer an indication for bacterial endocarditis prophylaxis according to the ACC/AHA practice guidelines. The risk of endocarditis is felt to be low in patients with straightforward bicuspid aortic valve disease. An exception to this recommendation is a patient with a prior history of endocarditis.[31]
Clinical Presentation
In infancy, bicuspid aortic valve disease is often asymptomatic. By adolescence an estimate 1 of 50 children born with these abnormalities will have clinically significant obstruction or regurgitation.[24]
Complications of bicuspid aortic valve disease are common in adulthood.[32] The abnormal shear stress leads to valve calcification and further aortic root dilation has been reported. [33] The most common complication is aortic stenosis, caused by premature fibrosis, stiffening, and calcium deposition. The majority of patients under 65 years of age with significant aortic valve stenosis have bicuspid aortic valve disease. A more rare complication of bicuspid aortic valve disease is aortic regurgitation. 15% of all cases of aortic regurgitation in the Euro Heart survey had bicuspid aortic valve disease. On auscultation, an ejection sound can be audible, best heard at the apex. There may be associated murmurs of aortic stenosis, incompetence, or coarctation of the aorta when these lesions are present.
Diagnostic Options
Echocardiography
Echocardiography is used to confirm the diagnosis of bicuspid aortic valve disease. Reported sensitivities and specificities of echocardiography for detecting BAV anatomy are 92% and 96% respectively. To establish the diagnosis, visualization of the aortic valve in systole in the short-axis view is essential. During diastole, the raphe can make the valve appear trileaflet. In the long-axis view, the valve often has an eccentric closure line and there is doming of the leaflets. Transesophageal echocardiography may improve visualization of the leaflets in case of inconclusive transthoracic echocardiography.
In all patients, serial transthoracic echocardiography should be performed to evaluate the valve and disease progression. Annual cardiac imaging is recommended for patients with significant valve lesions or with aortic root diameters >40 mm. Complete imaging of the thoracic aorta should be performed periodically for surveillance.[34]
Cardiac Magnetic Resonance Imaging and Computed Tomography
The thoracic aorta is visualized by alternative imaging modalities such as cardiac magnetic resonance imaging (MRI) or computer tomography (CT). Both cardiac MRI and CT images can help to confirm the bicuspid anatomy of the aortic valve.
Treatment
Medical treatment
In patients with bicuspid aortic valve disease, high blood pressure should be treated aggressively. The ACC/AHA guidelines for the management of adult congenital heart disease and guidelines for the management of patients with valvular heart disease suggest that it is reasonable to use beta-blockers in this population (Class IIa recommendation).[35] This is in accordance with the standard of care at many centers to slow the progression in Marfan-associated aortopathy.
Surgery
Indications for surgery are similar to indications for patients with “degenerative aortic valve disease”; intervention is indicated for severe valvular dysfunction, symptomatic patients, and patients with evidence of abnormal left ventricular dimensions and function.
In children and young adults, the bicuspid valve is not calcified and balloon valvuloplasty is recommended. A prosthetic valve implantation would be suboptimal due to the continuing growth of the child.
Indications for valvuloplasty in children include peak-to peak gradients >50 mm Hg with ST- or T-wave changes at rest or with exercise. Valvuloplasty is also indicated for symptomatic children with peak-to-peak gradients >60 mm Hg. [35]
Surgical options for adult bicuspic aortic valve disease include valve replacement (bioprosthetic or mechanical valves), Ross procedure or valve repair (for those with aortic incompetence) Surgical aortic valve replacement is the most common procedure in adults with bicuspid aortic valve disease, for either aortic valve stenosis or regurgitation. Indications of interventions are similar to those described for tricuspid aortic valve disease in the ACC/AHA guidelines for the management of patients with valvular heart disease.[33]
Approximately 30% of adults with bicuspid aortic valve disease undergoing aortic valve replacement will need aortic root surgery. Surgical attention for dimensions of the aortic root is essential because of the risk for further root dilation. The ascending aorta in patients with bicuspid aortic valve disease increases 0.2 to 1.2 mm/year.[36]
Guidelines suggest that changes in root size more than 0.5 cm/year are an indication for root replacement. Aortic root dimensions of 5.0 cm require intervention and aortic root dimensions of 4.5 cm require intervention if surgery is performed for valvular indications according to current guidelines.
Prognosis
Life expectancy in adult patients with bicuspid aortic valve disease is not shortened when compared to the general population. 10-year survival in asymptomatic adults with bicuspid aortic valve disease with a spectrum of valve function, was 96%.[32] In asymptomatic adults with bicuspid aortic valve disease without significant valve dysfunction the 20-year survival was 90%.[37]