Skip to main content
Medicine LibreTexts

15.3: Pituitary Gland and Hypothalamus

  • Page ID
    63460

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    By the end of this section, you will be able to:
    • Explain the interrelationships of the anatomy of the hypothalamus and the posterior and anterior lobes of the pituitary gland
    • Identify the two hormones released from the posterior pituitary, their target cells, and their principal actions
    • Identify the six hormones produced by the anterior lobe of the pituitary gland

    The hypothalamus–pituitary complex can be thought of as the “command center” of the endocrine system. This complex secretes several hormones that directly produce responses in target tissues, as well as hormones that regulate the synthesis and secretion of hormones of other glands. In addition, the hypothalamus–pituitary complex coordinates the messages of the endocrine and nervous systems. In many cases, a stimulus received by the nervous system must pass through the hypothalamus–pituitary complex to be translated into hormones that can initiate a response.

    The hypothalamus is a structure of the diencephalon of the brain located anterior and inferior to the thalamus (Figure \(\PageIndex{1}\)). It has both neural and endocrine functions, producing and secreting many hormones. In addition, the hypothalamus is anatomically and functionally related to the pituitary gland (or hypophysis), a bean-sized organ suspended from it by a stem called the infundibulum (or pituitary stalk). The pituitary gland is cradled within the sella turcica of the sphenoid bone of the skull. It consists of two lobes that arise from distinct parts of embryonic tissue: the posterior pituitary (neurohypophysis) is neural tissue, whereas the anterior pituitary (also known as the adenohypophysis) is glandular tissue that develops from the primitive digestive tract. The hormones secreted by the posterior and anterior pituitary, and the intermediate zone between the lobes are summarized in Table \(\PageIndex{1}\).

    Hypothalamus and Pituitary Gland.png
    Figure \(\PageIndex{1}\): Hypothalamus–Pituitary Complex. The hypothalamus region of the brain lies inferior and anterior to the thalamus. It connects to the pituitary gland by way of the stalk-like infundibulum. The pituitary gland consists of an anterior and posterior lobe, with each lobe releasing different hormones in response to signals from the hypothalamus. (Image credit: "Hypothalamus and Pituitary Gland" by Jennifer Lange and Justin Greene is licensed under CC BY-NC-SA 4.0.)

    Table \(\PageIndex{1}\): Pituitary Hormones

    Pituitary lobe Associated hormones Effect
    Anterior Growth hormone (GH) Promotes growth of body tissues
    Anterior Prolactin (PRL) Promotes milk production from mammary glands
    Anterior Thyroid-stimulating hormone (TSH) Stimulates thyroid hormone release from thyroid
    Anterior Adrenocorticotropic hormone (ACTH) Stimulates hormone release by adrenal cortex
    Anterior Follicle-stimulating hormone (FSH) Stimulates gamete production in gonads
    Anterior Luteinizing hormone (LH) Stimulates androgen production by gonads
    Anterior (intermediate) Melanocyte stimulating hormone (MSH) Stimulates melanin formation in melanocytes
    Posterior Antidiuretic hormone (ADH) Stimulates water reabsorption by kidneys
    Posterior Oxytocin Stimulates smooth muscle contractions in male and female reproductive tracts and uterine contractions during childbirth

    Posterior Pituitary

    The posterior pituitary is actually an extension of the neurons of the paraventricular and supraoptic nuclei of the hypothalamus. The cell bodies of these regions rest in the hypothalamus, but their axons descend as the hypothalamic–hypophyseal tract within the infundibulum and end in axon terminals that comprise the posterior pituitary (Figure \(\PageIndex{2}\)).

    Pituitary Gland Posterior.png

     

    Figure \(\PageIndex{2}\): Posterior Pituitary Gland. Neurosecretory cells in the supraoptic nucleus of the hypothalamus release antidiuretic hormone (ADH) and neurosecretory cells in the paraventricular nucleus of the hypothalamus release oxytocin (OT). The hormones move through the axons in the hypothalamohypophyseal tract that run through the infundibulum to their axon terminals located in the posterior lobe of the pituitary gland. These hormones are stored or released into the bloodstream via the capillary bed in the posterior pituitary gland. (Image credit: "Posterior Pituitary" by Jennifer Lange and Justin Greene is licensed under CC BY-NC-SA 4.0.)

    The posterior pituitary gland does not produce hormones, but rather stores and secretes hormones produced by the hypothalamus. The paraventricular nucleus produces the hormone oxytocin, whereas the supraoptic nucleus produces antidiuretic hormone (ADH). These hormones travel along the axons into storage sites in the axon terminals of the posterior pituitary. In response to signals from the same hypothalamic neurons, the hormones are released from the axon terminals into the bloodstream.

    Anterior Pituitary

    The anterior pituitary originates from the digestive tract in the embryo and migrates toward the brain during fetal development. There are three regions: the pars distalis is the most anterior, the pars intermedia is adjacent to the posterior pituitary, and the pars tuberalis is a slender “tube” that wraps the infundibulum.

    Recall that the posterior pituitary does not synthesize hormones, but merely stores them. In contrast, the anterior pituitary does manufacture hormones. However, the secretion of hormones from the anterior pituitary is regulated by two classes of hormones. These hormones—secreted by the hypothalamus—are the releasing hormones that stimulate the secretion of hormones from the anterior pituitary and the inhibiting hormones that inhibit secretion.

    Hypothalamic hormones are secreted by neurons, but enter the anterior pituitary through blood vessels (Figure \(\PageIndex{3}\)). Within the infundibulum is a bridge of capillaries that connects the hypothalamus to the anterior pituitary. This network, called the hypophyseal portal system, allows hypothalamic hormones to be transported to the anterior pituitary without first entering the systemic circulation. The system originates from the superior hypophyseal artery, which branches off the carotid arteries and transports blood to the hypothalamus. The branches of the superior hypophyseal artery form the hypophyseal portal system (see Figure \(\PageIndex{3}\)). Hypothalamic releasing and inhibiting hormones travel through a primary capillary plexus to the portal veins, which carry them into the anterior pituitary. Hormones produced by the anterior pituitary (in response to releasing hormones) enter a secondary capillary plexus, and from there drain into the circulation.

    Pituitary Gland Anterior.png
    Figure \(\PageIndex{3}\): Anterior Pituitary Gland. The anterior pituitary manufactures six hormones. Neurosecretory cells in the hypothalamus produces separate hormones that stimulate or inhibit hormone production in the anterior pituitary. Hormones from the hypothalamus travel by neuron axons to the primary capillary bed of the hypophyseal portal system located in the infundibulum. The hormones move through hypophyseal portal veins in the infundibulum to the secondary capillary bed in the anterior pituitary. Hormones produced in the anterior pituitary are released into the bloodstream via the secondary capillary bed. (Image credit: "Anterior Pituitary" by Jennifer Lange and Justin Greene is licensed under CC BY-NC-SA 4.0.)

    Six hormones are synthesized in the anterior pituitary. These are the growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Of the hormones of the anterior pituitary, TSH, ACTH, FSH, and LH are collectively referred to as tropic hormones (trope- = “turning”) because they turn on or off the function of other endocrine glands.

    The cells in the zone between the pituitary lobes (in humans considered part of the anterior pituitary) secrete a hormone known as melanocyte-stimulating hormone (MSH).  MSH is capable of darkening of the skin by inducing melanin production in the skin’s melanocytes. People also show increased MSH production during pregnancy; in combination with estrogens, it can lead to darker skin pigmentation, especially the skin of the areolas and labia minora.

     

    clipboard_ef35f7cef4c6c923a823a88074b1dc1d7.png

    Figure \(\PageIndex{4}\): The Pituitary Gland.  The pituitary gland consist of the anterior and posterior lobe.  The anterior lobe is responsible for manufacturing hormones while the posterior lobe is where hormones from the hypothalamus are stored. (Image Credit: "Pituitary Gland" by Yancy Aquino is licensed under CC BY-NC-SA 4.0, slide provided by the Regents of the University of Michigan Medical School © 2022.)

     


    Concept Review

    The hypothalamus–pituitary complex is located in the diencephalon of the brain. The hypothalamus and the pituitary gland are connected by a structure called the infundibulum, which contains vasculature and nerve axons. The pituitary gland is divided into two distinct structures with different embryonic origins. The posterior lobe houses the axon terminals of hypothalamic neurons. It stores and releases into the bloodstream two hypothalamic hormones: oxytocin (OT) and antidiuretic hormone (ADH). The anterior lobe is connected to the hypothalamus by the vasculature of the hypophyseal portal system in the infundibulum and produces and secretes six hormones. Their secretion is regulated, however, by releasing and inhibiting hormones from the hypothalamus. The six anterior pituitary hormones are: growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL).  Figure \(\PageIndex{4}\) is a summary of the pituitary hormones and their principal effects.

     

    Major_Pituitary_Hormones.png
    Figure \(\PageIndex{4}\): Major Pituitary Hormones. Major pituitary hormones and their target organs and effects. (Image credit: "Major Pituitary Hormones" by Jennifer Lange and Justin Greene is licensed under CC BY-NC-SA 4.0, modification of original by OpenStax.)

    Review Questions

    Query \(\PageIndex{1}\)

     

    Critical Thinking Questions

    Query \(\PageIndex{2}\)

     

    Glossary

    Query \(\PageIndex{3}\)

    Contributors and Attributions

     
     

    OpenStax Anatomy & Physiology (CC BY 4.0). Access for free at https://openstax.org/books/anatomy-and-physiology


    This page titled 15.3: Pituitary Gland and Hypothalamus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jennifer Lange et al..