Skip to main content
Medicine LibreTexts

4: Emergent Topics in Neuroscience

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    As a discipline, neuroscience encompasses the entire range of biology from genetics and molecules to system level approaches to understanding neurons and the brain. Often this means that neuroscientists are finding new and previously unsuspected influences on how neurons function, and therefore affect behaviour. This unit highlights some of the exciting areas of neuroscience that have emerged over the past decade that promise to give the discipline new avenues of research for the next generation of neuroscientists.

    • 4.1: The Gut Microbiome and its Impact on the Brain
      Specifically, within all fields of biology there is an emerging theme that an organ (such as skin) can be colonized by different types of microbes and this colonization does not have to be homogeneous across a particular organ. Although many of these gut bacteria can be treated pharmacologically in order for them to be eliminated, this may not be always be the best treatment.
    • 4.2: Gut Microbiome and the Brain
      There are several ways in which the gut microbiota interacts with the brain. Components of bacteria, such as lipopolysaccharides, activate the innate immune system. In dysbiosis, the innate immune system is overactive, which may result in inflammation of the central nervous system. Certain bacterially-derived metabolites, such as D-lactic acid and ammonia, have also been found to have neurotoxic effects. Many gut bacteria interact with the brain through the production of neurotransmitters.
    • 4.3: Exercise and the Brain
      It has now been established that exercise, even among minimal commitment exercise routines, has an array of robust effects on the brain, such as enhanced memory, mood, cognitive functioning, plasticity, and learning capabilities. Most notably, exercise has been implicated in having anti-depressant effects and counteracting disease or age-related mental impairment and atrophy, such as Alzheimer’s disease or dementia.
    • 4.4: Integrative and Contemplative Neuroscience
      A new field of scientific study, contemplative science, is concerned with how training the mind through meditation can induce neuroplasticity. In this chapter, we explore how contemplative practices, such as mindfulness meditation, influence neural activity and the architecture of the brain. Contemplative practices involve training a complex array of cognitive processing, including attentional and emotional regulation. In this chapter, we will take a closer look at this methodology.

    This page titled 4: Emergent Topics in Neuroscience is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by William Ju (eCampus Ontario) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.