Skip to main content
Medicine LibreTexts

5.9: Somatosensory Systems

  • Page ID
    69993
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Resources

    Somatosensory Cell Bodies

    All somatosensory receptor neurons have their cell bodies located in the dorsal root ganglion, a structure found just outside the dorsal aspect of the spinal cord. The receptor neurons, also called primary afferent fibers, of the somatosensory system are bipolar neurons, meaning they have one process from the cell body that splits into two branches. One travels to the location of the receptor (e.g. the skin for touch) via the spinal nerves, and one travels into the spinal cord at the dorsal horn via the dorsal root. The axon can either synapse in the spinal cord or ascend to the brain in the dorsal column. 

    clipboard_e25f6f922ec10713d1de0f4807fff92f8.png
    Figure 36.1. Primary afferent fibers travel from the periphery or target organs through the spinal nerve to the dorsal root ganglion where the cell body of the neuron is located. The axons then continue through the dorsal root into the dorsal horn of the spinal cord. Axons can branch and synapse in the spinal cord, or they can ascend to the brain via the dorsal column. ‘Somatosensory Spinal Cord’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License.

    Primary Afferent Axons

    Primary afferent axons are divided into four groups based on size and conduction speed. The groups, unfortunately, have different names depending on if the axons come from the skin (Aα, Aβ, Aδ, and C fibers; examples are touch or pain) or the muscles (Group I, II, III and IV fibers; example is proprioception). The fastest axons are the Aα or Group I type; they have the largest diameter and are heavily myelinated. The next fastest myelinated axons are the Aβ or Group II fibers, followed by the Aδ or Group III fibers. Finally, the C fibers have the smallest diameter, are unmyelinated, and are the slowest at conducting action potentials.

    Table 36.1. Diameter and conduction speed of primary afferent axons. Group I and A alpha have the largest diameter and fastest speed. Group II and A beta are the next largest and fastest, followed by Group III and A delta. Group IV and C fibers are the slowest and smallest of all axon types.
    Afferent Axon from Muscle Afferent Axon from Skin Diameter (μm) Conduction Speed (m/sec)
    Group I 13- 20 (Largest) 8- 120 (Fastest)
    Group II 6- 12 35- 75
    Group III 1- 5 5-30
    Group IV C 0.2- 1.5 (Smallest) 0.5- 2 (Slowest)

    Different sensory information is sent via the different types of axons. Proprioceptive information from the skeletal muscles is sent to the spinal cord via Group I fibers. Touch information from the mechanoreceptors travels along Aβ fibers. Aδ fibers carry pain and temperature sensation, and C fibers convey information about pain, temperature, itch, and chemoreception.

    Illustrations of different axon diameters, myelination, conduction speed, and sensory modality. Details in caption.
    Figure 36.2. Primary afferent fibers differ in diameter and myelination, and therefore have different conduction speeds. A alpha fibers convey proprioception and are the largest and fastest of the axon types. Mechanoreception, or touch, is sent via A beta fibers, the next largest. Some aspects of pain and temperatures are sent by A delta fibers, which have small diameter and little myelination. C fibers are unmyelinated and sensory axons that detect pain, temperature, itch and chemoreception (chemical composition). These are the slowest of the somatosensory axons. ‘Somatosensory Axon Types’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License.

    Dermatomes

    The afferent axons from the dorsal root ganglion enter the spinal cord via the spinal nerves. Axons from nearby regions of the body enter the spinal cord together, and this forms regions of skin that are innervated by the same spinal nerve. These regions are called dermatomes. Damage to a spinal nerve will cause dysfunction along the innervated dermatome. The dermatomes and spinal nerves are divided into 4 groups. The seven cervical spinal segments are the most rostral and are located in the neck. The twelve thoracic spinal segments are located along the chest and abdomen. The five lumbar segments are located below the thoracic segments, and the five sacral segments are the most caudal.

    clipboard_efc71d8335ed8a219370d6efe6cb09dd8.png
    Figure 36.3. Spinal nerves exit the spinal cord and innervate a region of skin called a dermatome. There are five cervical, twelve thoracic, five lumbar, and five sacral spinal segments. ‘Dermatomes’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License.

    Key Takeaways

    • Somatosensory neuron cell bodies are located in the dorsal root ganglion
    • Somatosensory primary afferent axons ascend to the brainstem via the dorsal column white matter tract
    • Primary afferent axons vary in diameter and myelination, both of which affect action potential speed
    • Different somatosensory information is carried by the different sizes afferents
    • Dermatomes are the region of skin innervated by one spinal nerve

    Test Yourself!

    Attributions

    Portions of this chapter were remixed and revised from the following sources:

    1. Foundations of Neuroscience by Casey Henley. The original work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    2. Open Neuroscience Initiative by Austin Lim. The original work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

    Media Attributions


    5.9: Somatosensory Systems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?