Skip to main content
Medicine LibreTexts

12.7: Phytochemicals

  • Page ID
    36356
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Phytochemicals are chemicals in plants that may provide some health benefit. Carotenoids are one type of phytochemical. Phytochemicals also include indoles, lignans, phytoestrogens, stanols, saponins, terpenes, flavonoids, carotenoids, anthocyanidins, phenolic acids, and many more. They are found not only in fruits and vegetables, but also in grains, seeds, nuts, and legumes.

    Many phytochemicals act as antioxidants, but they have several other functions, such as mimicking hormones, altering absorption of cholesterol, inhibiting inflammatory responses, and blocking the actions of certain enzymes.

    Phytochemicals are present in small amounts in the food supply, and although thousands have been and are currently being scientifically studied, their health benefits remain largely unknown. Also largely unknown is their potential for toxicity, which could be substantial if taken in large amounts in the form of supplements. Moreover, phytochemicals often act in conjunction with each other and with micronutrients. Thus, supplementing with only a few may impair the functions of other phytochemicals or micronutrients. As with the antioxidant vitamins, it is the mixture and variety of phytochemicals in foods that are linked to health benefits.

    Table \(\PageIndex{1}\): Some Phytochemical’s Obtained from Diet and Their Related Functions
    Phytochemical Phytochemical Source Phytochemical Function:
    Carotenoid Yellow-orange fruits, dark green leafy vegetables May possess strong cancer-fighting properties
    Indoles Cruciferous vegetables (i.e. bok choy, broccoli, choy sum) May inhibit the development of cancer-causing hormones and prevent tumor growth
    Phytoestrogen Grapes, berries, plums, soybeans, tofu, garlic May lower the risk for osteoporosis, heart disease, breast cancer, and menopausal symptoms
    Stanols Grains, nuts, legumes May lower blood cholesterol levels and reduce the risk of heart disease and stroke
    Saponins Broad beans, kidney beans, lentils May decrease blood lipids, lower cancer risks, and lower blood glucose response
    Terpenes Citrus fruits May slow cancer cell growth, aid in immune system support, and prevent virus related illness
    Flavonoids Fruits, vegetables, chocolates, wines, teas, nuts, seeds May benefit the immune system and prevent cancer cell growth.
    Anthocyanidins Fruits and vegetables with vibrant colors of orange, red, purple, and blue May prevent cardiovascular disease, reduce cancer cell proliferation (growth/multiplication) and inhibit tumor formation.
    Phenolic acids Coffee, fruits, vegetables, nuts, cereals, legumes, oilseeds, beverages and herbs May prevent cellular damage due to free-radical oxidation reaction and promote anti-inflammatory conditions in the body.

    Phytochemicals

    Phytochemicals are chemicals in plants that may provide some health benefit. Carotenoids are one type of phytochemical. Phytochemicals also include indoles, lignans, phytoestrogens, stanols, saponins, terpenes, flavonoids, carotenoids, anthocyanidins, phenolic acids, and many more. They are found not only in fruits and vegetables, but also in grains, seeds, nuts, and legumes. Many phytochemicals act as antioxidants, but they have several other functions, such as mimicking hormones, altering absorption of cholesterol, inhibiting inflammatory responses, and blocking the actions of certain enzymes.

    Phytochemicals are present in small amounts in the food supply, and although thousands have been and are currently being scientifically studied, their health benefits remain largely unknown. Also largely unknown is their potential for toxicity, which could be substantial if taken in large amounts in the form of supplements. Moreover, phytochemicals often act in conjunction with each other and with micronutrients. Thus, supplementing with only a few may impair the functions of other phytochemicals or micronutrients. As with the antioxidant vitamins, it is the mixture and variety of phytochemicals in foods that are linked to health benefits.

    Carotenoids Function and Health Benefits

    Carotenoids are pigments synthesized by plants that give them their yellow, orange, and red color. Over six hundred carotenoids have been identified and, with just a few exceptions, all are found in the plant kingdom. There are two classes of carotenoids—the xanthophylls, which contain oxygen, and the carotenes, which do not.

    In plants, carotenoids absorb light for use in photosynthesis and act as antioxidants. Beta-carotene, alpha-carotene, gamma-carotene, and beta-cryptoxanthin are converted to some extent to retinol in the body. The other carotenoids, such as lycopene, are not. Many biological actions of carotenoids are attributed to their antioxidant activity, but they likely act by other mechanisms, too.

    Eye Conditions

    Lutein, found in green leafy vegetables, and zeaxanthin, found in peppers, corn, and saffron, act as antioxidants in the retina of the eye and protect it from ultraviolet light damage. Diets high in these carotenoids are associated with a decreased risk of AMD, and there is good evidence that supplements containing these carotenoids also provide vision benefits. A review published in the August 2010 issue of Current Medical Research and Opinion concludes that supplementation with lutein and zeaxanthin reduces the incidence of AMD and cataracts.Barker II, F. M. “Dietary Supplementation: Effects on Visual Performance and Occurrence of AMD and Cataracts.” Curr Med Res Opin 26, no. 8 (2010): 2011–23. http://informahealthcare.com/doi/abs...95.2010.494549.

    The data that supports that beta-carotene supplementation may delay the progression of AMD is more convincing when beta-carotene is taken in combination with other micronutrients. The Age-Related Eye Disease Study found that a supplement containing 500 milligrams of vitamin C, 400 international units of vitamin E, 15 milligrams of beta-carotene, 80 milligrams of zinc oxide, and 2 milligrams of copper as cupric oxide reduced the risk of progressing to advanced stages of AMD by 25 percent.Age-Related Eye Disease Study Research Group. “A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta-Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss.” Arch Ophthalmol 119, no. 10 (2001): 1417–36. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462955/. This study did not find that the formulated supplement significantly prevented the onset of disease, only that it delayed its progression specifically in people with intermediate or advanced stage AMD. Studies are ongoing to determine if other antioxidant combinations actually protect against developing AMD at all.

    Cardiovascular Disease

    While some studies do associate a decreased risk for atherosclerosis with higher dietary intake of carotenoids, others do not. There is a large number of studies that show total carotenoid intake is associated with improvement in blood vessel function. A smaller number of studies show that intake of specific carotenoids, such as lycopene and alpha-carotene, are also associated with improved blood vessel function. The main problems associated with linking carotenoids to a decrease in cardiovascular disease risk, or any other disease for that matter, are that they are present in foods containing many other beneficial plant chemicals, and trials evaluating the effects of specific carotenoids in the form of supplements provide inconsistent and sometimes contradictory results.

    Cancer

    A higher intake of some carotenoids, but not others, is linked to decreased risks for some cancers. A review of two large studies (> 120,000 men and women) published in the October 2000 issue of The American Journal of Clinical Nutrition reports that there is no significant association between beta-carotene intake and lung cancer risk, but men and women with the highest intakes of total carotenoids had a more than 30 percent risk reduction for developing lung cancer.Michaud, D.S. et al. “Intake of Specific Carotenoids and Risk of Lung Cancer in 2 Prospective US Cohorts.” Am J Clin Nutr 72, no. 4 (2000): 990–97. http://www.ajcn.org/content/72/4/990.long. Other large studies conducted in Europe have confirmed the inverse relationship of total dietary carotenoid intake with lung cancer risk. There is some evidence that diets rich in lycopene, which is present in high concentrations in tomatoes, is linked to decreased prostate cancer risk, but it is not known if it is lycopene specifically or some other component in tomatoes that protects against prostate cancer.

    Carotenoid Bioavailability and Dietary Sources

    Carotenoids are not absorbed as well as vitamin A, but similar to vitamin A, they do require fat in the meal for absorption. In intestinal cells, carotenoids are packaged into the lipid-containing chylomicrons inside small intestine mucosal cells and then transported to the liver. In the liver, carotenoids are repackaged into lipoproteins, which transport them to cells.

    In contrast to most micronutrients, carotenoid availability is actually increased by the cooking process because cooking, along with chopping and homogenizing, releases carotenoids from the plant matrix. Thus, eating a can of tomatoes provides more lycopene than eating a raw tomato. However, overcooking transforms some of the carotenoids into inactive products, and in general it is best to chop and lightly steam vegetables containing carotenoids to maximize their availability from foods. Cooking carotenoid-containing foods in oil also enhances the bioavailability of carotenoids. In the United States, the most consumed carotenoids are alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein, and zeaxanthin. See Table \(\PageIndex{7}\) for the carotenoid content of various foods.

    Table \(\PageIndex{7}\): Alpha- and Beta-Carotene Content of Various Foods
    Food Serving Beta-carotene (mg) Alpha-carotene (mg)
    Pumpkin, canned 1c. 17.00 11.70
    Carrot juice 1c. 22.00 10.20
    Carrots, cooked 1c. 13.00 5.90
    Carrots, raw 1 medium 5.10 2.10
    Winter squash, baked 1c. 5.70 1.40
    Collards, cooked 1c. 11.60 0.20
    Tomato 1 medium 0.55 0.10
    Tangerine 1 medium 0.13 0.09
    Peas, cooked 1c. 1.20 0.09

    Source: US Department of Agriculture, Agricultural Research Service. 2010. USDA National Nutrient Database for Standard Reference, Release 23. http://www.ars.usda.gov/ba/bhnrc/ndl.

    Interactive \(\PageIndex{1}\)

    Visit the USDA website and find out more about the carotenoid content of various foods: http://www.ars.usda.gov/Services/docs.htm?docid=20958

    Three Other Phytochemicals and Their Potential Health Benefits

    Three classes of phytochemicals (other than carotenoids) are flavonoids, organosulfur compounds, and lignans. Their potential health benefits are discussed below.

    Flavonoids

    Flavonoids are a large class of chemicals including anthocyanidins (found in red, blue, and purple berries), flavanols (found in teas, chocolate, berries, apples, yellow onions, kale, and broccoli), and isoflavones (found in soy products). Flavonoids are very effective free radical scavengers, and there is some evidence that higher intakes of flavonoid-rich foods and/or beverages reduce the risk of cardiovascular disease, but this has not been consistently observed. Although flavonoids have been shown to reduce the incidence of some tumors in animals, similar studies in humans have been inconclusive.

    Organosulfur Compounds

    These compounds are predominantly found in garlic, but can also be found in onions and leeks. It’s suspected that the higher intake of garlic is the aspect of the Mediterranean diet that contributes to a decreased risk of cardiovascular disease. Animal and laboratory studies suggest the organosulfur compounds in garlic reduce cholesterol, are anti-inflammatory, stimulate the synthesis of glutathione, and cause death of cancer cells. There is some evidence in humans that garlic reduces cholesterol, but more recent studies did not confirm that the effect was signficant or sustained. A higher intake of garlic likely inhibits blood clot formation in humans.

    Observational studies suggest diets high in organosulfur compounds decrease the risk of gastric and colorectal cancer. For other cancers, the data is less consistent.

    Lignans

    Lignans are a group of chemical compounds obtained from many food sources, including grains, nuts, seeds, fruits, and vegetables, and especially flax seed. Some lignans are also called phytoestrogens as they can mimic or inhibit some of the actions of the hormone estrogen in the body. The antiestrogenic effect of some lignans suggests they may be helpful in treating hormone-dependent cancers, such as breast and ovarian cancers. However, studies are few and conflicting on whether eating foods high in lignans reduces breast or ovarian cancer. In regard to cardiovascular disease risk, diets rich in whole grains are protective, but it remains unclear whether it is the lignans in whole grains that are responsible for the reduced risk. Whole grains contain many other beneficial phytochemicals, micronutrients, and fiber.

    Interactive \(\PageIndex{2}\)

    To discover more about phytochemicals, visit the website for the Micronutrient Information Center of the Linus Pauling Institute at Oregon State University: http://lpi.oregonstate.edu/infocenter/phytochemicals.html

    Other Dietary Sources of Beneficial Phytochemicals

    Herbs and Spices

    These are the aromatic parts of plants, such as the leaves, seeds, pods, and berries. They are an additional dietary source of phytochemicals, and many have exceptional antioxidant capacity.

    Throughout the ages, people have used spices and herbs not only for adding flavor to foods, but also as medicines. Curcumin, the principal component of tumeric, has been used for over two thousand years in India to treat a variety of ailments. As of 2011, over seventy clinical trials are investigating the health benefits of curcumin, which may include reducing cancer risk and delaying the progression of Alzheimer’s disease.

    You learned in the beginning of this chapter that nutmeg comes from the dried seed kernel of Myristica fragrans and has been used as an antimicrobial, antifungal, and anti-inflammatory agent, and as a pain reliever. In high doses nutmeg acts similar to a psychoactive drug in that it causes euphoria, delusions, and hallucinations. According to a study conducted on over 3,100 foods, beverages, spices, herbs, and supplements, the spices and herbs were the dietary sources most rich in antioxidants.

    Interactive \(\PageIndex{3}\)

    Read the article, “The Total Antioxidant Content of More than 3,100 Foods, Beverages, Spices, Herbs, and Supplements Used Worldwide,” published in the January 2010 issue of the Nutrition Journal. It is a useful source to find dietary sources of antioxidants.

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841576/?tool=pubmed

    Tools for Change

    Add some spice, flavor, and decoration to your food along with beneficial antioxidants and phytochemicals. Embracing cuisine rich in spices and herbs further enhances the health benefits of eating a diet rich in fruit and vegetables. Think spices are too hot for your palate? As little as half a teaspoon of cinnamon has been shown in scientific studies to provide health benefits, such as improving glucose homeostasis in people with Type 2 diabetes. Over fifteen clinical trials are now evaluating the effectiveness of cinnamon as a adjunct treatment for Type 2 diabetes and/or cardiovascular disease.

    Tea

    Tea is an aromatic beverage made from the dried parts of plants steeped in hot water. Its health benefits have been known for years, and as with coffee the benefits are not just physiological, but also mental and social. In folklore, teas are considered curatives of stomachache, diarrhea, and even the plague. In The Book of Tea, Okakura Kakuzo asserts that consuming a cup of tea provides “the adoration of the beautiful among the sordid facts of everyday existence.”Okakura Kakuzo. The Book of Tea. (Berlin, Germany: Dover Publications, 1964).

    Teas can contain more than seven hundred different phytochemicals. Some of them may be beneficial and others may not be, as some reduce the dietary absorption of some micronutrients. The health claims of drinking tea—black, green, or red—number at least in the hundreds but remain mostly scientifically unsupported. There are a great number of studies showing that drinking tea is at least linked to a decreased risk of heart disease, cancer, and diabetes, but the exact phyotchemicals illiciting these health benefits are under intense scrutiny. Moreover, people who consume more tea are likely to drink fewer soft drinks and therefore, based on a “replacement theory,” have a reduced likelihood of having a chronic disease.

    Resources

    1. Bacciottini, L., Falchetti, A., Pampaloni, B., Bartolini, E., Carossino, A. M., & Brandi, M. L. (2007). Phytoestrogens: Food or drug? Clinical Cases in Mineral and Bone Metabolism, 4(2), 123–130.
    1. Bagchi, D., Sen, C. K., Bagchi, M., & Atalay, M. (2004). Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry. Biokhimiia, 69(1), 75–80, 1 p preceding 75. https://doi.org/10.1023/b:biry.0000016355.19999.93
    1. Flavonoids. (2014, April 28). Linus Pauling Institute. https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids
    1. Goto, T., Takahashi, N., Hirai, S., & Kawada, T. (2010). Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism. PPAR Research, 2010. https://doi.org/10.1155/2010/483958
    1. Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis. Pharmacological Research : The Official Journal of the Italian Pharmacological Society, 55(3), 224–236. https://doi.org/10.1016/j.phrs.2007.01.009
    1. Kozłowska, A., & Szostak-Wegierek, D. (2014). Flavonoids—Food sources and health benefits. Roczniki Panstwowego Zakladu Higieny, 65(2), 79–85.
    2. Patisaul, H. B., & Jefferson, W. (2010). The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology, 31(4), 400–419. https://doi.org/10.1016/j.yfrne.2010.03.003
    3. Phenolic Acids—An overview | ScienceDirect Topics. (n.d.). Retrieved June 29, 2020, from www-sciencedirect-com.eres.library.manoa.hawaii.edu/topics/food-science/phenolic-acids
    4. Phytochemicals—Final.pdf. (n.d.). Retrieved June 9, 2020, from https://www1.villanova.edu/content/dam/villanova/studentlife/documents/healthpromotion/Phytochemicals%20-%20Final.pdf
    5. Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from Edible Legumes: Chemistry, Processing, and Health Benefits. Journal of Medicinal Food, 7(1), 67–78. https://doi.org/10.1089/109662004322984734
    6. Thompson, G. R., & Grundy, S. M. (2005). History and Development of Plant Sterol and Stanol Esters for Cholesterol-Lowering Purposes. The American Journal of Cardiology, 96(1, Supplement), 3–9. https://doi.org/10.1016/j.amjcard.2005.03.013
    7. Xu, D.-P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.-J., & Li, H.-B. (2017). Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences, 18(1). https://doi.org/10.3390/ijms18010096
    8. Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Critical Reviews in Food Science and Nutrition, 56(13), 2223–2230. https://doi.org/10.1080/10408398.2013.805316
    9. Zamora-Ros, R., Rothwell, J. A., Scalbert, A., Knaze, V., Romieu, I., Slimani, N., Fagherazzi, G., Perquier, F., Touillaud, M., Molina-Montes, E., Huerta, J. M., Barricarte, A., Amiano, P., Menéndez, V., Tumino, R., de Magistris, M. S., Palli, D., Ricceri, F., Sieri, S., … González, C. A. (2013). Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The British Journal of Nutrition, 110(8), 1500–1511. https://doi.org/10.1017/S0007114513000688

    Attributions

    • Hawaii

    12.7: Phytochemicals is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.